Jumat, 04 Desember 2009

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika

Energi dari suatu benda adalah ukuran dari kesanggupan benda tersebut untuk melakukan suatu usaha. Satuan energi adalah joule. Dalam ilmu fisika energi terbagi dalam berbagai macam/jenis, antara lain :

- energi potensial
- energi kinetik/kinetis
- energi panas
- energi air
- energi batu bara
- energi minyak bumi
- energi listrik
- energi matahari
- energi angin
- energi kimia
- energi nuklir
- energi gas bumi
- energi ombak dan gelombang
- energi minyak bumi
- energi mekanik/mekanis
- energi cahaya
- energi listrik
- dan lain sebagainya

A. Energi potensial atau Energi Diam
Energi potensial adalah energi yang dimiliki suatu benda akibat adanya pengaruh tempat atau kedudukan dari benda tersebut. Energi potensial disebut juga dengan energi diam karena benda yang dalam keaadaan diam dapat memiliki energi. Jika benda tersebut bergerak, maka benda itu mengalami perubahan energi potensial menjadi energi gerak. Contoh misalnya seperti buah kelapa yang siap jatuh dari pohonnya, cicak di plafon rumah, dan lain sebagainya.

Rumus atau persamaan energi potential :
Ep = m.g.h

keterangan
Ep = energi potensial
m = massa dari benda
g = percepatan gravitasi
h = tinggi benda dari tanah

B. Energi Kinetik atau Kinetis
Energi kinetik adalah energi dari suatu benda yang dimiliki karena pengaruh gerakannya. Benda yang bergerak memiliki energi kinetik.

Rumus atau persamaan energi kinetik :
Ek = 1/2.m.v^2

keterangan
Ep = energi kinetik
m = massa dari benda
v = kecepatan dari benda
v^2 = v pangkat 2

C. Hukum Kekekalan Energi
" Energi tidak dapat diciptakan dan juga tidak dapat dimusnahkan "
Jadi perubahan bentuk suatu energi dari bentuk yang satu ke bentuk yang lain tidak merubah jumlah atau besar energi secara keseluruhan.

Rumus atau persamaan mekanik (berhubungan dengan hukum kekekalan energi) :
Em = Ep + Ek

keterangan
Em = energi mekanik
Ep = energi kinetik
Ek = energi kinetik

Kamis, 03 Desember 2009

elastisitas

ELASTISITAS

Ketika dirimu menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. silahkan dicoba kalau tidak percaya. Jika tarikanmu dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika dirimu merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Apabila di laboratorium sekolah anda terdapat pegas, silahkan melakukan pembuktian ini. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena benda-benda tersebut memiliki sifat elastis. Elastis atau elastsisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.

Perlu anda ketahui bahwa gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas. Batas elastis itu apa ? lalu bagaimana kita bisa mengetahui hubungan antara besarnya gaya yang diberikan dan perubahan panjang minimum sebuah benda elastis agar benda tersebut bisa kembali ke bentuk semula ? untuk menjawab pertanyaan ini, mari kita berkenalan dengan paman Hooke.


HUKUM HOOKE

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :

Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.

Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …

Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah

Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

Tegangan

Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :

Satuan tegangan adalah N/m2 (Newton per meter kuadrat)

Regangan

Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :

Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).

Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :

Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat

Hukum Pertama


Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."

Pada zaman Kepler, klaim diatas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.

Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproximasi lingkaran. Jadi, kalau ditilik dari observasi jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh Pluto, yang diobservasi pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elipse dan kecil ukurannya.

Hukum Kedua


Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat didekat matahari dan lambat dijarak yang jauh. Sehingga jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."

Secara matematis:

dimana adalah "areal velocity".

Hukum Ketiga

Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitativ.

"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."

Secara matematis:

dimana adalah period orbit planet dan adalah axis semimajor orbitnya.

Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.

# Sejarah

Pada tahun 1601 Kepler berusaha mencocokkan berbagai bentuk kurva geometri pada data-data posisi Planet Mars yang dikumpulkan oleh Tycho Brahe. Hingga tahun 1606, setelah hampir setahun menghabiskan waktunya hanya untuk mencari penyelesaian perbedaan sebesar 8 menit busur (mungkin bagi kebanyakan orang hal ini akan diabaikan), Kepler mendapatkan orbit planet Mars. Menurut Kepler, lintasan berbentuk elips adalah gerakan yang paling sesuai untuk orbit planet yang mengitari matahari, dan pada tahun 1609 dia mempublikasikan Astronomia Nova yang menyatakan dua hukum gerak planet. Hukum ketiga tertulis dalam Harmonices Mundi yang dipublikasikan sepuluh tahun kemudian.

Minggu, 08 November 2009

Gerak melingkar

Gerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.

Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah \theta\!, \omega\! dan \alpha\! atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan r\!, v\! dan a\!.

Besaran gerak lurus dan melingkar
Gerak lurus Gerak melingkar
Besaran Satuan (SI) Besaran Satuan (SI)
poisisi r\! m sudut \theta\! rad
kecepatan v\! m/s kecepatan sudut \omega\! rad/s
percepatan a\! m/s2 percepatan sudut \alpha\! rad/s2
- - perioda T\! s
- - radius R\! m

Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

\int \omega\ dt = \theta \ \ \leftrightarrow\ \ \omega = \frac{d\theta}{dt}
\int \alpha\ dt = \omega \ \ \leftrightarrow\ \ \alpha = \frac{d\omega}{dt}
\int \int \alpha\ dt^2 = \theta \ \ \leftrightarrow\ \ \alpha = \frac{d^2\theta}{dt^2}

Hubungan antar besaran sudut dan tangensial

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui R\! khusus untuk komponen tangensial, yaitu

\theta = \frac{r_T}{R}\ \ , \ \ \omega = \frac{v_T}{R}\ \ , \ \ \alpha = \frac{a_T}{R}

Perhatikan bahwa di sini digunakan r_T\! yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu

r_T \approx |\overrightarrow{r}(t+\Delta t)-\overrightarrow{r}(t)|\!

untuk suatu selang waktu kecil atau sudut yang sempit.

Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya \omega\!, yaitu:

  • gerak melingkar beraturan, dan
  • gerak melingkar berubah beraturan.

Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut \omega\! tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial v_T\! dengan jari-jari lintasan R\!

\omega = \frac {v_T} R

Arah kecepatan linier v\! dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial v_T\!. Tetapnya nilai kecepatan v_T\! akibat konsekuensi dar tetapnya nilai \omega\!. Selain itu terdapat pula percepatan radial a_R\! yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.

a_R = \frac {v^2} R = \frac {v_T^2} R

Bila T\! adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran \theta = 2\pi R\!, maka dapat pula dituliskan

v_T = \frac {2\pi R} T \!

Kinematika gerak melingkar beraturan adalah

\theta(t) = \theta_0 + \omega\ t

dengan \theta(t)\! adalah sudut yang dilalui pada suatu saat t\!, \theta_0\! adalah sudut mula-mula dan \omega\! adalah kecepatan sudut (yang tetap nilainya).

Gerak melingkar berubah beraturan

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut \alpha\! tetap. Dalam gerak ini terdapat percepatan tangensial a_T\! (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial v_T\!).

\alpha = \frac {a_T} R

Kinematika GMBB adalah

\omega(t) = \omega_0 + \alpha\ t \!
\theta(t) = \theta_0 + \omega_0\ t  + \frac12 \alpha\ t^2 \!
\omega^2(t) = \omega_0^2 + 2 \alpha\ (\theta(t) - \theta_0) \!

dengan \alpha\! adalah percepatan sudut yang bernilai tetap dan \omega_0\! adalah kecepatan sudut mula-mula.

Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:

  • titik awal gerakan dilakukan (x_0,y_0)\!
  • kecepatan sudut putaran \omega\! (yang berarti suatu GMB)
  • pusat lingkaran (x_c,y_c)\!

untuk kemudian dibuat persamaannya [2].

Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan R\! yang diperoleh melalui:

R = \sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2} \!

Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu

x(t) = x_c + R cos(\omega t + \phi_x) \!
y(t) = y_c + R sin(\omega t + \phi_y) \!

dengan dua konstanta \phi_x \! dan \phi_y \! yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai (x_0,y_0)\!, maka dapat ditentukan nilai \phi_x \! dan \phi_y \!:

\phi_x = \arccos \left( \frac{x_0 - x_c}{R} \right)\!
\phi_y = \arcsin \left( \frac{y_0 - y_c}{R} \right)\!

Perlu diketahui bahwa sebenarnya

\phi_x = \phi_y \!

karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui

v  = \sqrt{v_x^2 + v_y^2}

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

v_T  = v = \sqrt{v_x^2 + v_y^2}

dengan

v_x  = \dot{x} = \frac{dx}{dt}
v_y  = \dot{y} = \frac{dy}{dt}

diperoleh

v_x  = -\omega R \sin(\omega t + \phi_x) \!
v_y  = \omega R \cos(\omega t + \phi_x) \!

sehingga

v_T  = \sqrt{(-\omega)^2 R^2 \sin^2(\omega t + \phi_x) + \omega^2 R^2 \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R \sqrt{\sin^2(\omega t + \phi_x) + \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R\!

Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui

a  = \sqrt{a_x^2 + a_y^2}

dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka

a_T  = a = \sqrt{a_x^2 + a_y^2}

dengan

a_x  = \ddot{x} = \frac{d^2x}{dt^2}
a_y  = \ddot{y} = \frac{d^2y}{dt^2}

diperoleh

a_x  = -\omega^2 R \cos(\omega t + \phi_x) \!
a_y  = -\omega^2 R \sin(\omega t + \phi_x) \!

sehingga

a_T  = \sqrt{(-\omega)^4 R^2 \cos^2(\omega t + \phi_x) + \omega^4 R^2 \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R \sqrt{\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R\!

Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa

\omega \rightarrow \omega(t) = \int \alpha dt = \omega_0 + \alpha t \!

dengan \alpha\! percepatan sudut dan \omega_0\! kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.

Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:

x(t) = x_c + R \cos \theta \!
y(t) = y_c + R \sin \theta \!

di mana \theta = \theta(t) \! adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara \theta \!, \omega \! dan \alpha \! melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

Kecepatan sudut

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh

v_x(t) = - R \sin \theta\ \frac{d\theta}{dt} =  - \omega(t) R \sin \theta \!
v_y(t) = R \cos \theta \ \frac{d\theta}{dt} = \omega(t) R \cos \theta \!

dengan

\frac{d\theta}{dt} = \omega(t) = \omega_0 + \alpha\ t \!

Dapat dibuktikan bahwa

v(t) = v_T(t) = \sqrt{v_x^2(t) + v_y^2(t)} = \omega(t) R \!

sama dengan kasus pada GMB.

Percepatan total

Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikan

a_x(t) = - R \cos \theta \ \left( \frac{d\theta}{dt} \right)^2  - R \sin \theta \frac{d^2\theta}{dt^2} \!
a_x(t) = - R \sin \theta \ \left( \frac{d\theta}{dt} \right)^2  + R \cos\theta \frac{d^2\theta}{dt^2} \!

yang dapat disederhanakan menjadi

a_x(t) = - \omega^2 R \cos \theta  - \alpha R \sin \theta \!
a_x(t) = - \omega^2 R \sin \theta  + \alpha R \cos \theta \!

Selanjutnya

a^2(t) = a_x^2(t) + a_y^2(t) = R^2\left(\omega^4(t) + \alpha^2 \right) \!

yang umumnya dituliskan [3]

a^2(t) = a_R^2(t) + a_T^2(t) \!

dengan

a_T = \alpha R \!

yang merupakan percepatan sudut, dan

a_R = \omega^2 R = a_S \!

yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.

Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.

Gerak berubah beraturan
Kecepatan GLBB GMB
Besar berubah tetap
Arah tetap berubah